Magnetic resistor (Resistor)
Magnetic resistance from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):
\begin{equation*}
e(s) = R \, f(s).
\end{equation*}
Magnetic resistor (Resistor)
Magnetic resistance from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):
\begin{equation*}
e(s) = R \, f(s).
\end{equation*}
Power variables
flux: Magnetic flux variation (mfv) \(\frac{d\,\phi}{dt}\) (V)
effort: Magnetomotive force (mmf) \(\psi\) (A)
Arguments
- label : str
- Resistor label.
- nodes : ('N1', 'N2')
- Component terminals with positive flux N1->N2.
- parameters : keyword arguments
- Component parameters
| Key | Description | Unit | Default |
|---|---|---|---|
| R | Magnetic resistance | 1/Ohm | 0.001 |
Usage
res = Resistor('res', ('N1', 'N2'), R=0.001)
Netlist line
magnetics.resistor res ('N1', 'N2'): R=0.001;
Example
>>> # Import dictionary
>>> from pyphs.dictionary import magnetics
>>> # Define component label
>>> label = 'res'
>>> # Define component nodes
>>> nodes = ('N1', 'N2')
>>> # Define component parameters
>>> parameters = {'R': 0.001, # Magnetic resistance (1/Ohm)
... }
>>> # Instanciate component
>>> component = magnetics.Resistor(label, nodes, **parameters)
>>> # Graph dimensions
>>> len(component.nodes)
2
>>> len(component.edges)
1
Reference
| [1] | (1, 2) Antoine Falaize. Modelisation, simulation, generation de code et correction de systemes multi-physiques audios: Approche par reseau de composants et formulation hamiltonienne a ports. PhD thesis, ecole Doctorale d'Informatique, Telecommunication et electronique de Paris, Universite Pierre et Marie Curie, Paris 6, EDITE UPMC ED130, july 2016. |