Saturating magnetic capacitor (Capacitorsat)

Saturating magnetic capacity from [1] (chap 7) with state \(\phi\in [-\phi_{sat}, \phi_{sat}]\) and parameters described below. The energy is

\begin{equation*} H(\phi) = \frac{1}{C_{0}} \, \left( \frac{\phi^2}{2} + C_{sat} H_{sat}(\phi)\right), \end{equation*}

with

\begin{equation*} H_{sat}(\phi) = - \frac{8 \phi_{sat}}{\pi \left(4-\pi\right)} \, \left(\frac{\pi^{2} \phi^{2}}{8\phi_{sat}^{2}} + \log{\left (\cos{\left (\frac{\pi \phi}{2 \phi_{sat}} \right)} \right)}\right). \end{equation*}

The resulting magnetomotive force is:

\begin{equation*} \psi(\phi)= \frac{d\,H(\phi)}{d \phi} = \frac{ 1}{C_{0}} \left(\phi + C_{sat} \frac{d\,H_{sat}(\phi)}{d \phi}\right), \end{equation*}

with

\begin{equation*} \frac{d\,H_{sat}(\phi)}{d \phi}= \frac{4}{4- \pi} \left(\tan{\left (\frac{\pi \phi}{2 \phi_{sat}} \right )} - \frac{\pi \phi}{2\phi_{sat}} \right). \end{equation*}

Saturating magnetic capacitor (Capacitorsat)

Saturating magnetic capacity from [1] (chap 7) with state \(\phi\in [-\phi_{sat}, \phi_{sat}]\) and parameters described below. The energy is

\begin{equation*} H(\phi) = \frac{1}{C_{0}} \, \left( \frac{\phi^2}{2} + C_{sat} H_{sat}(\phi)\right), \end{equation*}

with

\begin{equation*} H_{sat}(\phi) = - \frac{8 \phi_{sat}}{\pi \left(4-\pi\right)} \, \left(\frac{\pi^{2} \phi^{2}}{8\phi_{sat}^{2}} + \log{\left (\cos{\left (\frac{\pi \phi}{2 \phi_{sat}} \right)} \right)}\right). \end{equation*}

The resulting magnetomotive force is:

\begin{equation*} \psi(\phi)= \frac{d\,H(\phi)}{d \phi} = \frac{ 1}{C_{0}} \left(\phi + C_{sat} \frac{d\,H_{sat}(\phi)}{d \phi}\right), \end{equation*}

with

\begin{equation*} \frac{d\,H_{sat}(\phi)}{d \phi}= \frac{4}{4- \pi} \left(\tan{\left (\frac{\pi \phi}{2 \phi_{sat}} \right )} - \frac{\pi \phi}{2\phi_{sat}} \right). \end{equation*}

Power variables

flux: Magnetic flux variation (mfv) \(\frac{d\,\phi}{dt}\) (V)

effort: Magnetomotive force (mmf) \(\psi\) (A)

Arguments

label : str
Capacitorsat label.
nodes : ('N1', 'N2')
Component terminals with positive flux N1->N2.
parameters : keyword arguments
Component parameters
Key Description Unit Default
C0 Magnetic capacitance around zero H 1000.0
Csat Nonlinearity parameter d.u. 1000.0
phisat Magnetic capacitance Wb 0.1

Usage

capa = Capacitorsat('capa', ('N1', 'N2'), C0=1000.0, Csat=1000.0, phisat=0.1)

Netlist line

magnetics.capacitorsat capa ('N1', 'N2'): C0=1000.0; Csat=1000.0; phisat=0.1;

Example

>>> # Import dictionary
>>> from pyphs.dictionary import magnetics
>>> # Define component label
>>> label = 'capa'
>>> # Define component nodes
>>> nodes = ('N1', 'N2')
>>> # Define component parameters
>>> parameters = {'C0': 1000.0,    # Magnetic capacitance around zero (H)
...               'Csat': 1000.0,  # Nonlinearity parameter (d.u.)
...               'phisat': 0.1,   # Magnetic capacitance (Wb)
...              }
>>> # Instanciate component
>>> component = magnetics.Capacitorsat(label, nodes, **parameters)
>>> # Graph dimensions
>>> len(component.nodes)
2
>>> len(component.edges)
1

Reference

[1] (1, 2) Antoine Falaize. Modelisation, simulation, generation de code et correction de systemes multi-physiques audios: Approche par reseau de composants et formulation hamiltonienne a ports. PhD thesis, ecole Doctorale d'Informatique, Telecommunication et electronique de Paris, Universite Pierre et Marie Curie, Paris 6, EDITE UPMC ED130, july 2016.