Magnetic capacitor (Capacitor)

Magnetic capacity from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):

\begin{equation*} e(s) = \frac{1}{C s} \, f(s). \end{equation*}

Magnetic capacitor (Capacitor)

Magnetic capacity from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):

\begin{equation*} e(s) = \frac{1}{C s} \, f(s). \end{equation*}

Power variables

flux: Magnetic flux variation (mfv) \(\frac{d\,\phi}{dt}\) (V)

effort: Magnetomotive force (mmf) \(\psi\) (A)

Arguments

label : str
Capacitor label.
nodes : ('N1', 'N2')
Component terminals with positive flux N1->N2.
parameters : keyword arguments
Component parameters
Key Description Unit Default
C Magnetic capacitance H 1e-09

Usage

capa = Capacitor('capa', ('N1', 'N2'), C=1e-09)

Netlist line

magnetics.capacitor capa ('N1', 'N2'): C=1e-09;

Example

>>> # Import dictionary
>>> from pyphs.dictionary import magnetics
>>> # Define component label
>>> label = 'capa'
>>> # Define component nodes
>>> nodes = ('N1', 'N2')
>>> # Define component parameters
>>> parameters = {'C': 1e-09,  # Magnetic capacitance (H)
...              }
>>> # Instanciate component
>>> component = magnetics.Capacitor(label, nodes, **parameters)
>>> # Graph dimensions
>>> len(component.nodes)
2
>>> len(component.edges)
1

Reference

[1] (1, 2) Antoine Falaize. Modelisation, simulation, generation de code et correction de systemes multi-physiques audios: Approche par reseau de composants et formulation hamiltonienne a ports. PhD thesis, ecole Doctorale d'Informatique, Telecommunication et electronique de Paris, Universite Pierre et Marie Curie, Paris 6, EDITE UPMC ED130, july 2016.