Magnetic capacitor (Capacitor)
Magnetic capacity from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):
\begin{equation*}
e(s) = \frac{1}{C s} \, f(s).
\end{equation*}
Magnetic capacitor (Capacitor)
Magnetic capacity from [1] (chap 7). In Laplace domain with \(s\in\mathbb C\):
\begin{equation*}
e(s) = \frac{1}{C s} \, f(s).
\end{equation*}
Power variables
flux: Magnetic flux variation (mfv) \(\frac{d\,\phi}{dt}\) (V)
effort: Magnetomotive force (mmf) \(\psi\) (A)
Arguments
- label : str
- Capacitor label.
- nodes : ('N1', 'N2')
- Component terminals with positive flux N1->N2.
- parameters : keyword arguments
- Component parameters
Key | Description | Unit | Default |
---|---|---|---|
C | Magnetic capacitance | H | 1e-09 |
Usage
capa = Capacitor('capa', ('N1', 'N2'), C=1e-09)
Netlist line
magnetics.capacitor capa ('N1', 'N2'): C=1e-09;
Example
>>> # Import dictionary >>> from pyphs.dictionary import magnetics >>> # Define component label >>> label = 'capa' >>> # Define component nodes >>> nodes = ('N1', 'N2') >>> # Define component parameters >>> parameters = {'C': 1e-09, # Magnetic capacitance (H) ... } >>> # Instanciate component >>> component = magnetics.Capacitor(label, nodes, **parameters) >>> # Graph dimensions >>> len(component.nodes) 2 >>> len(component.edges) 1
Reference
[1] | (1, 2) Antoine Falaize. Modelisation, simulation, generation de code et correction de systemes multi-physiques audios: Approche par reseau de composants et formulation hamiltonienne a ports. PhD thesis, ecole Doctorale d'Informatique, Telecommunication et electronique de Paris, Universite Pierre et Marie Curie, Paris 6, EDITE UPMC ED130, july 2016. |