Flux-controlled fractional integrator (Fracintfc)
Flux-controlled fractional integrator from [1] (chap 7)
\begin{equation*}
e(s) = g \, s^{-beta} \, f(s).
\end{equation*}
Flux-controlled fractional integrator (Fracintfc)
Flux-controlled fractional integrator from [1] (chap 7)
\begin{equation*}
e(s) = g \, s^{-beta} \, f(s).
\end{equation*}
Power variables
flux: Not defined \(f\) (None)
effort: Not defined \(e\) (None)
Arguments
- label : str
- Fracintfc label.
- nodes : ('N1', 'N2')
- Component terminals with positive flux N1->N2.
- parameters : keyword arguments
- Component parameters
| Key | Description | Unit | Default |
|---|---|---|---|
| g | Gain | unknown | 1.0 |
| beta | Integration order in (0, 1) | d.u. | 0.5 |
| NbPoles | Approximation order | d.u. | 20 |
| PolesMinMax | Poles modules in \((10^{min}, 10^{max})\) | Hz | (-5, 10) |
| NbFreqPoints | Number of optimization points | d.u. | 200 |
| FreqsMinMax | Optimization interval | Hz | (1, 48000.0) |
| DoPlot | Plot transfer function | bool | False |
Usage
fracint = Fracintfc('fracint', ('N1', 'N2'), g=1.0, beta=0.5, NbPoles=20, PolesMinMax=(-5, 10), NbFreqPoints=200, FreqsMinMax=(1, 48000.0), DoPlot=False)
Netlist line
fraccalc.fracintfc fracint ('N1', 'N2'): g=1.0; beta=0.5; NbPoles=20; PolesMinMax=(-5, 10); NbFreqPoints=200; FreqsMinMax=(1, 48000.0); DoPlot=False;
Example
>>> # Import dictionary
>>> from pyphs.dictionary import fraccalc
>>> # Define component label
>>> label = 'fracint'
>>> # Define component nodes
>>> nodes = ('N1', 'N2')
>>> # Define component parameters
>>> parameters = {'g': 1.0, # Gain (unknown)
... 'beta': 0.5, # Integration order in (0, 1) (d.u.)
... 'NbPoles': 20, # Approximation order (d.u.)
... 'PolesMinMax': (-5, 10), # Poles modules in :math:`(10^{min}, 10^{max})` (Hz)
... 'NbFreqPoints': 200, # Number of optimization points (d.u.)
... 'FreqsMinMax': (1, 48000.0), # Optimization interval (Hz)
... 'DoPlot': False, # Plot transfer function (bool)
... }
>>> # Instanciate component
>>> component = fraccalc.Fracintfc(label, nodes, **parameters)
>>> # Graph dimensions
>>> len(component.nodes)
18
>>> len(component.edges)
34
Reference
| [1] | (1, 2) Antoine Falaize. Modelisation, simulation, generation de code et correction de systemes multi-physiques audios: Approche par reseau de composants et formulation hamiltonienne a ports. PhD thesis, ecole Doctorale d'Informatique, Telecommunication et electronique de Paris, Universite Pierre et Marie Curie, Paris 6, EDITE UPMC ED130, july 2016. |