Thiele-Small based nonlinear model of loudspeakers

March 4, 2018

This document has been generated by the PyPHS software ${ }^{1}$ on 2018/03/04 20:47:32.

Contents

1 Port-Hamiltonian System (Core object)

The Port-Hamiltonian structure in PyPHS is

$$
\begin{aligned}
& \left(\begin{array}{c}
\frac{\mathrm{dx}}{\mathrm{~d} t} \\
\mathbf{w} \\
\mathbf{y} \\
\mathbf{c y}
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{M}_{\mathbf{x x}} & \mathbf{M}_{\mathbf{x w}} & \mathbf{M}_{\mathbf{x y}} & \mathbf{M}_{\mathbf{x c y}} \\
\mathbf{M}_{\mathbf{w x}} & \mathbf{M}_{\mathbf{w w}} & \mathbf{M}_{\mathbf{w y}} & \mathbf{M}_{\mathbf{w c y}} \\
\mathbf{M}_{\mathbf{y x}} & \mathbf{M}_{\mathbf{y w}} & \mathbf{M}_{\mathbf{y y}} & \mathbf{M}_{\mathbf{y c y}} \\
\mathbf{M}_{\mathbf{c y x}} & \mathbf{M}_{\mathbf{c y w}} & \mathbf{M}_{\mathbf{c y y}} & \mathbf{M}_{\mathbf{c y c y}}
\end{array}\right) \cdot\left(\begin{array}{c}
\nabla \mathrm{H}(\mathbf{x}) \\
\mathbf{z}(\mathbf{w}) \\
\mathbf{u} \\
\mathbf{c u}
\end{array}\right) \quad \text { with }
\end{aligned}
$$

1.1 Dimensions

The system's dimensions are given below. Notice that a 0 value in the dimensions of the linear parts $\bullet_{\mathbf{l}}=\bullet-\bullet_{\mathbf{n l}}$ occurs if the system has not been split.

$$
\begin{aligned}
& \operatorname{dim}(\mathbf{l})=n_{\mathbf{l}}=3 \\
& \operatorname{dim}\left(\mathbf{n}_{\mathbf{l}}\right)=n_{\mathbf{n}_{\mathbf{l}}}=0 \\
& \operatorname{dim}(\mathbf{x})=n_{\mathbf{x}}=3 \\
& { }^{1} \text { https://pyphs.github.io/pyphs/ }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dim}\left(\mathbf{x}_{\mathbf{l}}\right)=n_{\mathbf{x}_{1}}=3 \\
& \operatorname{dim}\left(\mathbf{x}_{\mathbf{n} \mathbf{l}}\right)=n_{\mathbf{x}_{\mathbf{n} \mathbf{1}}}=0 \\
& \operatorname{dim}(\mathbf{w})=n_{\mathbf{w}}=0 \\
& \operatorname{dim}\left(\mathbf{w}_{\mathbf{l}}\right)=n_{\mathbf{w}_{\mathbf{1}}}=0 \\
& \operatorname{dim}\left(\mathbf{w}_{\mathbf{n l}}\right)=n_{\mathbf{w}_{\mathbf{n} \mathbf{1}}}=0 \\
& \operatorname{dim}(\mathbf{y})=n_{\mathbf{y}}=1 \\
& \operatorname{dim}(\mathbf{p})=n_{\mathbf{p}}=0 \\
& \operatorname{dim}(\mathbf{o})=n_{\mathbf{o}}=0 \\
& \operatorname{dim}(\mathbf{c y})=n_{\mathbf{c y}}=0
\end{aligned}
$$

1.2 Constants

The system's constant substition values are given below.

parameter	value (SI)
L	0.011
R	5.7
K	40000000.0
M	0.019
A	0.406
i_{nvL}	90.90909090909092
i_{nvM}	52.631578947368425

1.3 Internal variables

The system's internal variables are given below.

- The state $\mathbf{x}: t \mapsto \mathbf{x}(t) \in \mathbb{R}^{3}$ associated with the system's energy storage:
$\mathbf{x}=\left(\begin{array}{c}x_{\mathrm{L}} \\ x_{\mathrm{K}} \\ x_{\mathrm{M}}\end{array}\right)$.
- The state increment $\mathbf{d}_{\mathbf{x}}: t \mapsto \mathbf{d}_{\mathbf{x}}(t) \in \mathbb{R}^{3}$ that represents the numerical increment during a single simulation time-step:

$$
\mathbf{d}_{\mathbf{x}}=\left(\begin{array}{c}
d_{\mathrm{xL}} \\
d_{\mathrm{xK}} \\
d_{\mathrm{xM}}
\end{array}\right)
$$

- The dissipation variable $\mathbf{w}: t \mapsto \mathbf{w}(t) \in \mathbb{R}^{0}$ associated with the system's energy dissipation:
$\mathbf{w}=$ Empty.

1.4 External variables

The controlled system's variables are given below.:

- the input variable $\mathbf{u}: t \mapsto \mathbf{u}(t) \in \mathbb{R}^{1}$ associated with the system's energy supply (sources):
$\mathbf{u}=\left(v_{1}\right)$.
- the parameters $\mathbf{p}: t \mapsto \mathbf{p}(t) \in \mathbb{R}^{0}$ associated with variable system parameters: p = Empty .

1.5 Output variables

The output (i.e. observed quantities) are:

- The output variable $\mathbf{y}: t \mapsto \mathbf{y}(t) \in \mathbb{R}^{1}$ associated with the system's energy supply (sources):
$\mathbf{y}=\left(i_{1}\right)$.
$i_{1}=i_{\mathrm{nvL}} \cdot x_{\mathrm{L}}$.
- The observer $\mathbf{o}: t \mapsto \mathbf{o}(t) \in \mathbb{R}^{0}$ associated with functions of the above quantities: $\mathbf{o}=$ Empty.

1.6 Connectors

The inputs and ouputs intended to be connected are given below.

- The connected inputs $\mathbf{u}_{c}: t \mapsto \mathbf{u}_{c}(t) \in \mathbb{R}^{0}$
$\mathbf{u}_{c}=$ Empty.
- The connected outputs $\mathbf{y}_{c}: t \mapsto \mathbf{y}_{c}(t) \in \mathbb{R}^{0}$
$\mathbf{y}_{c}=$ Empty.

1.7 Constitutive relations

1.7.1 Storage

The system's storage function (Hamiltonian) is:
$\mathrm{H}(\mathbf{x})=\frac{K}{2} \cdot x_{\mathrm{K}}^{2}+\frac{i_{\mathrm{nvL}}}{2} \cdot x_{\mathrm{L}}^{2}+\frac{i_{\mathrm{nvM}}}{2} \cdot x_{\mathrm{M}}^{2}$
The gradient of the system's storage function is:
$\nabla \mathrm{H}(\mathbf{x})=\left(\begin{array}{c}g_{\mathrm{xL}} \\ g_{\mathrm{xK}} \\ g_{\mathrm{xM}}\end{array}\right)$
$g_{\mathrm{xL}}=i_{\mathrm{nvL}} \cdot x_{\mathrm{L}}$.
$g_{\mathrm{xK}}=K \cdot x_{\mathrm{K}}$.
$g_{\mathrm{xM}}=i_{\mathrm{nvM}} \cdot x_{\mathrm{M}}$.
The Hessian matrix of the storage function is:
$\triangle \mathrm{H}(\mathbf{x})=\left(\begin{array}{ccc}i_{\mathrm{nvL}} & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & i_{\mathrm{nvM}}\end{array}\right)$
The Hessian matrix of the linear part of the storage function is:
$\mathbf{Q}=\left(\begin{array}{ccc}i_{\mathrm{nvL}} & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & i_{\mathrm{nvM}}\end{array}\right)$

1.7.2 Dissipation

The dissipation function is:
$\mathbf{z}(\mathbf{w})=$ Empty
The jacobian matrix of the dissipation function is:
$\mathcal{J}_{\mathbf{z}}(\mathbf{w})=$ Empty
The jacobian matrix of the linear part of the dissipation function is:

$$
\mathbf{Z}_{1}=\left(\begin{array}{cc}
R & 0 \\
0 & A
\end{array}\right)
$$

1.8 Structure

The interconnection matrices $\mathbf{M}=\mathbf{J}-\mathbf{R}$ are given below.
1.8.1 M structure

$$
\begin{aligned}
& \mathbf{M}=\left(\begin{array}{cccc}
-R & 0 & -B \cdot e^{-x_{\mathrm{K}}^{2}} & -1 \\
0 & 0 & 1 & 0 \\
B \cdot e^{-x_{\mathrm{K}}^{2}} & -1 & -A & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \mathbf{M}_{\mathbf{x x}}=\left(\begin{array}{ccc}
-R & 0 & -B \cdot e^{-x_{\mathrm{K}}^{2}} \\
0 & 0 & 1 \\
B \cdot e^{-x_{\mathrm{K}}^{2}} & -1 & -A
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{M}_{\mathrm{xw}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{xy}}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)
$$

$$
\mathbf{M}_{\mathrm{xcy}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{wx}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathbf{w w}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{wy}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{wcy}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathbf{y x}}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
$$

$$
\mathbf{M}_{\mathrm{yw}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathbf{y y}}=\mathrm{Zeros}
$$

$$
\mathbf{M}_{\mathbf{y c y}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{cyx}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{cyw}}=\text { Empty }
$$

$$
\mathbf{M}_{\mathrm{cyy}}=\text { Empty }
$$

$\mathbf{M}_{\mathbf{c y c y}}=$ Empty

1.8.2 J structure

$\mathbf{J}=\left(\begin{array}{cccc}0 & 0 & -1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^{2}} & -1.0 \\ 0 & 0 & 1.0 & 0 \\ 1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^{2}} & -1.0 & 0 & 0 \\ 1.0 & 0 & 0 & 0\end{array}\right)$
$\mathbf{J}_{\mathbf{x x}}=\left(\begin{array}{ccc}0 & 0 & -1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^{2}} \\ 0 & 0 & 1.0 \\ 1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^{2}} & -1.0 & 0\end{array}\right)$
$\mathbf{J}_{\mathrm{xw}}=$ Empty
$\mathbf{J}_{\mathbf{x y}}=\left(\begin{array}{c}-1.0 \\ 0 \\ 0\end{array}\right)$
$\mathbf{J}_{\mathbf{x c y}}=$ Empty
$\mathbf{J}_{\mathbf{w x}}=$ Empty
$\mathbf{J}_{\mathbf{w w}}=$ Empty
$\mathbf{J}_{\mathbf{w y}}=$ Empty
$\mathbf{J}_{\mathbf{w c y}}=$ Empty
$\mathbf{J}_{\mathbf{y x}}=\left(\begin{array}{lll}1.0 & 0 & 0\end{array}\right)$
$\mathbf{J}_{\mathbf{y w}}=$ Empty
$\mathbf{J}_{\mathbf{y y}}=$ Zeros
$\mathbf{J}_{\mathbf{y c y}}=$ Empty
$\mathbf{J}_{\mathbf{c y x}}=$ Empty
$\mathbf{J}_{\mathbf{c y w}}=$ Empty
$\mathbf{J}_{\mathbf{c y y}}=$ Empty
$\mathbf{J}_{\mathbf{c y c y}}=$ Empty

1.8.3 R structure

$$
\begin{aligned}
& \mathbf{R}_{=}\left(\begin{array}{cccc}
1.0 \cdot R & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1.0 \cdot A & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \mathbf{R}_{\mathbf{x x}}=\left(\begin{array}{ccc}
1.0 \cdot R & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1.0 \cdot A
\end{array}\right) \\
& \mathbf{R}_{\mathbf{x w}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{xy}}=\text { Zeros } \\
& \mathbf{R}_{\mathrm{xcy}}=\text { Empty } \\
& \mathbf{R}_{\mathbf{w x}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{ww}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{wy}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{wcy}}=\text { Empty } \\
& \mathbf{R}_{\mathbf{y x}}=\text { Zeros } \\
& \mathbf{R}_{\mathbf{y w}}=\text { Empty } \\
& \mathbf{R}_{\mathbf{y y}}=\text { Zeros } \\
& \mathbf{R}_{\mathbf{y c y}}=\text { Empty } \\
& \mathbf{R}_{\mathbf{c y x}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{cyw}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{cyy}}=\text { Empty } \\
& \mathbf{R}_{\mathrm{cycy}}=\text { Empty }
\end{aligned}
$$

