ircam
’”” = Centre UP mC
aSIE La Rochelle Pumpldﬂu 1881 SORBONNE

o PyPHS: An open source Python library dedicated
to the generation of passive guaranteed simulation code

for multiphysical (audio) systems

Antoine Falaize?

IRCAM seminar - Research and Technology
04/12/2017

2 Postdoc in the team M2N, LaSIE UMR CNRS 7356, ULR, La Rochelle, France

1/45

Objective : Numerical simulation of multiphysical systems

e electronics, mechanics, magnetics, thermics.
e nonlinearities, non ideal behaviors.

e high complexity.

Standard approachs

1. Build a set of elementary physical models.
2. Build a system as the connection of these models.
3. Apply ad-hoc discretization methods.

Difficulties

D1 The stability of a single model simulation is not guaranteed.

D2 This is even worst for the interconnected system.

1e2

Xo

time t (s) fe=2
2/45

But physical systems are passive systems

Internal
Power
Dissipation

Internal
Energy
Storage

External
Power
Sink

Power-balance

dE
dt

+ Pp + = 0

with

e Energy £ (J),
e Dissipated power (W),
e Sink Power (W).

3/45

Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models
3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.

D2 The interconnected system inherit from this property.

time t (s) le2

4/45

Encoding of passivity in PyPHS

Multi-physical system Comp()m:nts Network

- e
/ o o)\ e
(} —

NN
W

ot -
Storage

Conservative

Porc-Hamiltonian System (PHS) interconnection

Ports
Structure Dissipation
preserving
numerical Dirac structure [0

method

Discrere PHS

5/45

PyPHS : everything is formal

Network are formal graph structures

e Use of NETWORKX ! Python package.

e Creation and manipulation of graphs structures.

Model equations in symbolic form

e Use of SymPy 2 Python package.
e A posteriori manipulation of system'’s equations.

e Automated generation of IATEXdocumentation.

Numerical method is derived formally

e Also use SYMPY Python package.
e Symbolic optimization of the update equations.

e Easy analysis of the signal flow — Code generation.

1. see https://networkx.github.io/
2. see http://www.sympy.org/en/index.html
6/45

https://networkx.github.io/
http://www.sympy.org/en/index.html

PyPHS background

Main tools

e Port-Hamiltonian Systems (PHS) formalism 3

e Graph theory*

2012—2016

e ANR project HaMecMoPSys>.

e PhD thesis of Antoine Falaize® in the team S3AM7 at IRCAM - UMR STMS
9912 founded by EDITE.

2016— - --

e Implementation of the scientific results obtained between 2012 and 2016.

e Further scientific developments.

3. Masc HKE, VAN DER SCHAFT et BREEDVELD, “An intrinsic Hamiltonian formulation of network dynamics :
Non-standard Poisson structures and gyrators”, 1992.

4. Desoer et Kum, Basic circuit theory, 2009.

5. see https://hamecmopsys.ens2m.fr/

7/45

6. 1 ALAIZE, “Modélisation, simulation, génération de code et correction de systemes multi-physiques audios :

https://hamecmopsys.ens2m.fr/
http://s3am.ircam.fr/?lang=en

Table of contents

1. Network
PyPHS inputs : Graph and Netlist.

1. Components
PyPHS dictionary elements : Graph objects.

3. Port-Hamiltonian Systems
PyPHS Core object : Passive-guaranteed structure.

4. Numerical Method
PyPHS Method object : Structure preserving numerical scheme.

5. Code generation
PyPHS outputs : PyTHON, C++4, JUCE and FAUST.

8/45

Network

RN

System representation paradigm : Power graphs

Directed graphs with self loops

e Set of nodes N = {Ny,--- ,N,} .
e Set of edges B = {By, - ,B,} with B; = (n,m) € N°.
e Direction : Bi=n—m

efforte =e,—€,
e vee

flow f

Receiver convention

e Each edge = two power variables : Flow and Effort
e Flow f : defined through the edges.

e Effort ¢ : defined across the edges as the difference of two quantities.
e Power received by the edge : P = f¢ (W).

Connection = Nodes identification

13
+ =
® ® @ ®

10/45

Electrical graphs

Physical quantities

voltage =v,—Vv,
Flow = Current (A), Effort = Voltage (V), ¢ = Potential (V) T

current

E I t
xample system Nodes

® O @

Vit
2 Capacitors C1 and C2, @
2 Resistors R1 and R2, Graph nodes = Circuit nodes Graph edges = Circuit
1 BJ transistor Q, Ground = Reference node # components
3 Ports Vi, Vo and Vc. Note Q = 2 edges

11/45

Mechanical graphs

Physical quantities

velocity =v,
Flow = Force (N), Effort = Velocity (m/s), e = point velocity (m/s) ~®:==

O—0O

arce

Example system

Nodes

B : Graph nodes = unique velocities %@
2 Masses M1 and M2, Reference velocity = node #
2 Springs K1 and K2, Graph edges = components
1 Damper,
1 Port F.

12/45

Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), ¢ = some force (N)

velocity

Example system
Edges Graph

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,

1 Port F.

Serial edges = same velocity Add nodes to close the graph

13/45

Magnetical graphs

mmf- k h,;

Physical quantities o
H

flux variation
Flow = flux variation (V), Effort = magnetomotive force (A), ¢ = some mmf (A)

Example system

P2

3 metal pieces P1, P2, P3, P3
1 Air gap G,

1 Flux leakage L,

1 Port M (magnet).

Add nodes to close the graph

Serial = same magnetic flux

14/45

Thermal graphs

Physical quantities

temperature

entropy variation

Lty

Flow = entropy variation (W/K), Effort = temperature (K), ¢ = temperature (K)

Example system

2 Heat capacities T1 and T2,
1 Heat transfer R,

Nodes
@) ®

Graph

® ®

Graph edges = components
Note R = 2 edges (irreversibility)

Graph nodes = temperatures
Reference temperature = node #

15/45

Multiphysical graphs : connectors

Transformer
N1 N3 1
o €354 = o €1—-2,
s = —afisg,
— [’(34»4]
(0] = .
N2 N4 [] [fl~>2]
Gyrator
N1 N3
“ &84 = afio,
fina = —Ze,o,
_ [e34]
[0} = .
N [o] [fA—2]

Conserving connection

In each case : P34 = —P1_,»

16/45

Kirchhoff laws on graphs

Incidence Matrix

1 if edge b is ingoing node n,
[r]"’b T) —1 ifedge bis outgoing node n
Example : RLC & going :

R L c BR BL Bc B
Gw 0 0 41 -1\ #
° r— -1 0 0 0| Ny
+1 -1 0 0 N
0 +1 -1 +1/ N3

~

Reduced incidence Matrix

Arbitrary reference node # Generalized Kirchhoff’s laws
B Bng
/ Yo \ # o Efforts e € R™, flows f € R"™.
N e Node quantities p € R™.
= L e vTp=c¢, (KVL).
K : o 7f=0, (KCL).

N, 17/45

Dirac structure

= Kirchhoff laws on graphs

Edges splitting
Depends on the components
Flow controlled | — edge — .

Effort controlled ¢ — edge — §.
Outputs a € R"™.
Inputs b € R™,

Realizability criterion

If 75 is invertible, then 3!J s.t.

b=1J-a.

Dirac structure

L =11 pandca=1]

2. ’Yefﬂ = _’\I/f : fb!
3. W/ef = ’)/f_l

RLC example

By is e-controlled, Bg, B¢, B, are - controlled

BL | BR Bc
/ 0 0 +1 \
Yo B 0| -1 0 N1
< Ye | V5 > -1 +1 0 N»
1] 0o -1 N3

(-0 %)

——

)()

b
J is skew-symmetric = aT b=aT. J a=0.

This is the Tellegen’s theorem :

S oo = 30 Po— 0.

18/45

PyPHS realizability analysis

Automated construction of the Dirac structure
Algorithme 8

Data A netlist and a dictionary of components.

Résult e If realizable :
1. partition B = [B., Bj],
2. structure b = J - a.

e Else : Realizability fault detection — the user correct the
netlist.

8. FaLamze et HELIE, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.

19/45

Components

5@ 6N

(definitions)

Constitutive relation for component s

Storage function (Hamiltonian) I1. of the state x..

Stored energy E(t) = Hs(xs(t)) >

. dEs dx
Received power <= = H.(xs) 5=

1E
Power variables for component s “'
Received power "{t* = ¢s fs. @
C <1 N,
e-controlled ¢ = dr = fs = 1L (x.).
D:E+Py+Ps=0

f-controlled s = ‘IXS = es = H](xs).

Total energy stored in n storage edges

o x= (X1, ,Xng)-

o BE=H(x)=> " Hixs)>0.
(l]: d _ n dHs dxs

° = VHT & = Zsil dxs dt -

21/45

(examples)

Mass (flow=velocity, effort=force)

State
Hamiltonian

Flow

Effort

Capacitor

State
Hamiltonian

Flow
Effort

momentum x,, =— m Vy,.

2
X/W

kinetic energy 1, (xn) = 5.

mass velocity fr, = H/ (%)

dxm

inertial force e,, =

charge q¢.
electrostatic energy ¢ (xc) =
__ dx¢c __ dqc
current fc =~ ol
X
voltage ec = I1-(xc) = *£.

Xm

m*

— mdvm
ac — M -

2
Xc
2C"

22/45

Dissipative components (definitions)

Constitutive relation for component

Dissipation function of the variable

Received (dissipated) power >0.

Power variables for component y

Received power eqgfg >0 '
e-controlled ¢, = = jq = . _@_
f-controlled f, = — ¢y = .

D:G+FPo+Ps=0

Total power dissipated in dissipative

edges
L]

L]
o = = >0

23/45

Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

Variable
Function
Flow

Effort

Resistor

Variable
Function
Flow

Effort

elongation velocity

resistance force , with D > 0.
force fp = =D vp.

velocity ep = = vp.

Dissipated Power =fpep =R v%

current

resistance voltage , with R > 0.
current fp =

velocity ep =

Dissipated Power =freg = Ri3

24/45

Ports (definitions)

Input and output on port
Actuated quantity v (input) and Observed quantity

goutput).

Received Power

The power is the power that goes out
of the system on port p. dE
Ports are power sink. '
Power variables for port e ‘
<1 | N
Received power Fsp(t) =epfp D 4Pyt Pi=0
e-controlled ¢, = y, = j, = 1, (flow source).
f-controlled f, = y, = ¢, = 1, (effort source).

Total power on port edges

25/45

Ports (examples)

Voltage source

Input voltage
Qutput current

Flow current fiy =

Effort voltage ey =

Received Power = fyey = vyiy.

Imposed force (flow=force, effort=velocity)

Input force
Qutput velocity

Flow force fiy =

Effort velocity ey =

Received Power = fyey = fyvy.

26/45

PyPHS Dictionary (v0.2)

e Mechanics (1D) : masses, springs lin./nonlin. (cubic, saturating, etc.),
-elastic (fractional derivatives).

e Electronics : , coils and lin./nonlin. capacitors, , ,
,
e Magnetics : , lin./nonlin capacitors, -inductor (fractional
integrators).
e Thermics : , capacitors.

e Connections : electromagnetic couplings, electromechanic coupling, irreversible
transfers, gyrators, transformers.

27/45

3. Port-Hamiltonian Systems

28/45

Putting all together

Components

Storage by =

g, = VH(x)

de’

This encodes the power

balance
0 = aT-b
dx
= VH(x)T . =
(x) dt
| ——

Network (Dirac structure)

by ayx
b= and a =

with b =J-aand JT = —J.

29/45

Port-Hamiltonian structure

Storage ((1[—? +hoo VH(x)
- _waT +wa +Jwy ' ()
=y —dwyT Hlyy
—_——— —~
b J a

30/45

Reduction of the linear dissipative structure’

Splitting of

a diagonal matrix and a collection of nonlinear functions

(o) =()

New Port-Hamiltonian structure

cbx V(%)
o | = (0-R) |)
N——

b a

Interpretation

e J — reduced conservative interconnection,

e R > 0 — resistive interconnection (includes the coefficients from 7).

9. FaLaIzE et HELIE, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

1/4
2016. 31/45

PyPHS Port-Hamiltonian structure

dx Mux Maw My VH(x)
= | Mux Muww My |- (w)
MyX MyW Myy
N—— ~~
b M a
with

+Hh Hhw Hly Rix Rxw Ry
M=| —Ju +Jww +duwy |- | Rw™ Ruw Ruy
_JXYT _JWyT +Jyy PN RXYT RWYT Ryy

J

32/45

4, Numerical method

33/45

Structure preserving numerical method 1

Objective
Discrete time power balance : $=[k] + /1 [k] + /< [k] = 0.
Choice

SE[K] _ Elk+1]—E[K] _ HXk+1)—H(x[K])

5T = 5T 5T

e Mono-variate case :

Elk+ 1] - E[£] _ $ Ho(xa[k +1]) = Hn(xn[k]) = xn[k + 1] — Xa[K]
5T xolk + 1] = xa[K] 5T

Solution :

dx _ x[k+1]—x[k]
dt 5T 6T

VH(x) — VIH(x[k].0x[k]) £ discrete gradient '

with
d - o HH([X + ()-X]”) B H”([X]H) dHn
[V H (x, bx)]n = [0 [(sx]T;o dxn (xn)-

10. Trom et ABE, “Hamiltonian-conserving discrete canonical equations based on variational difference quotients”,

1988. 34/45

Structure preserving numerical method 2

Solution

=3

d ox[k x[k+1]—x[k
5 gl o e

VH(xt) — VIH(x[K], 0x[K])

=M. zwlk) -

PHS structure is preserved in discrete time = numerical passivity.

Discret PHS

35/45

Relative error on the power balance (PyPHS in

fe = 5000Hz

er = (H(xi 1) — Hxx)) /H(xo)
Grad_ disc
Pnt milieu
- Trapeze
+ Euler imp.
Euler exp.

10 15 20 25 3.0
temps ¢ (s)

e = (H(xk. 1) — H(xx)) /H(xo)

10°
2 Grad. disc
10 Pnt milieu
10 - Trapeze
106 Euler imp.
o Euler exp.
& 10°
10%°

;3:if4\JrMUw\W_, W

-16
10°06 05 1.0 15 20 25 30
temps t (s)

fe = 500Hz

Grad. disc
Pt milieu
- Trapeze

+ Eulerimp.
Euler exp.

'
05 10 15 20 25 3.

temps t (s)

€k

0

H(xy) = H(xp))/Hixo)

10° -

2 F ™7 — Grad. disc.
10 -~ Pt milieu
10 '+ Trapeze
106 Euler imp

. - - Eulerexp.

& 10°
lorlﬂ
10-12
10'14

-1
10 0.0 0.5 1.0 1.5 2.0 25

temps ¢ (s)

36/45

5. Code generation

37/45

PyPHS : an overview

S
— = o
Symbolic Symbolic Numerical
graph PHS PHS
inetwork netj—{JSSUISt_LL_GIBPH_ _tore_ Simulation ! maincop |
"""" [Read/write a s nean Manage iterative i T
graph from manage PHS
netlst file netlist structure —
iDictionary! | Methed | " ‘pata Numeric |
1 Predefined |Evaluate the T D
! components ! ! numerical E‘—’ ph
i (extendable) | | scheme |

38/45

Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.
2. Each symbolic expression is simplified and transformed into Python functions.

3. Updates of internal variable is defined by a message passing system.

Perform simulation

e Inputs are :

1. A sequence of input values,

2. A sequence of control parameters values.
e Apply each update sequentially.

e Results are stored on disk to avoid memory overload.

39/45

C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers — can be changed after generation.
2. Each symbolic expression is simplified and transformed into a C++ function.

3. Same message passing system.

Perform simulation

e Inputs are :

1. the sample rate,

2. a sequence of input values,

3. a sequence of control parameters values.
e Apply each update sequentially.

e Results are stored on disk — call back into Python for post processing.

40/45

Juce!! C++ snippets generation for real-time audio plugins

Only for Juce audio FX

1. Call the generated C++ object into Juce Template.
2. Generation of a set of snippets — copy/past into Juce template.

3. The control parameters are automatically associate with sliders — real-time
control.

4. Still experimental.

Yield AU/VST real-time audio plugins

e Can be used in most Digital Audio Workstations.

11. https ://juce.com/

41/45

FAUST !? code generation for real-time audio plugins

Only for FAUST audio FX

e Dedicated Method object : Symbolic pre-inversion of every matrices.

e Fixed number of nonlinear solvers iteration — duplicate of a single iteration.

e A complete iteration is built and encompassed in a dedicated feedback system.
e Control parameters are associated with sliders.

e Still experimental.

Yield VST real-time audio plugins

e Automated optimization of the signal flow.
e Can be used in most Digital Audio Workstations.

e Several compilation targets.

12. http://faust.grame.fr/

42/45

http://faust.grame.fr/

Last word

43/45

PyPHS today (v0.2)

e Open source Library on a GITHUB repository 3.

e Licence CECILL (CEA-CNRS-INRIA Logiciels libres).

e PyTHON 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.

e Multiphysical components dictionary.

e Automated graph analysis.

e Automated derivation of the PHS structure and ATEXcode generation.
e Passive guaranteed simulations.

e Automated generation of C++, JUCE and FAUST code.

13. https://pyphs.github.io/pyphs/

44/45

https://pyphs.github.io/pyphs/

PyPHS tomorrow

Scientific results to be implemented

e Anti-aliasing observer (PhD Remy Miiller).

e PHS in scattering variables (~» Wave Digital PHS).

e Piecewise Linear constitutive laws (~ cope with realizability faults).
e Improve Nonlinear solver (# Newton-Raphson).

e Automated derivation of a command laws (feedforward + feedback).

45/45

PyPHS tomorrow

Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS

46/45

Thank you for your attention

Contact : antoine.falaize@gmail.com

47/45

antoine.falaize@gmail.com

	Intro
	Network
	System representation paradigm: Power graphs
	Electrical graphs
	Mechanical graphs
	Mechanical graphs (dual)
	Magnetical graphs
	Thermal graphs
	Multiphysical graphs: connectors
	Kirchhoff laws on graphs

	Components
	Storage components
	Dissipative components
	Ports

	Port-Hamiltonian system
	Numerical method
	Code generation
	Python simulation
	C++ code generation
	FAUST code generation

	Conclusion
	Today
	Tomorrow

