PyPHS: An open source Python library dedicated to the generation of passive guaranteed simulation code for multiphysical (audio) systems

Antoine Falaize
IRCAM seminar - Research and Technology
04/12/2017

Postdoc in the team M2N, LaSIE UMR CNRS 7356, ULR, La Rochelle, France
Introduction

Objective: Numerical simulation of multiphysical systems

- electronics, mechanics, magnetics, thermics.
- nonlinearities, non ideal behaviors.
- high complexity.

Standard approaches

1. Build a set of elementary physical models.
2. Build a system as the connection of these models.
3. Apply *ad-hoc* discretization methods.

Difficulties

D1 The **stability** of a single model simulation is not guaranteed.
D2 This is even worst for the interconnected system.
But physical systems are passive systems

\[\frac{dE}{dt} + P_D + P_S = 0 \]

with

- Energy \(E \) (J),
- Dissipated power \(P_D \) (W),
- Sink Power \(P_S \) (W).
Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models

3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.
D2 The interconnected system inherit from this property.
Encoding of passivity in PyPHS

Port-Hamiltonian System (PHS)

\[\mathcal{D} : \frac{\delta E}{\delta t} + P_D + P_S = 0 \]

Conservative interconnection

Network

Components

Multi-physical system

Storage \(\frac{dE}{dt} \)

Dissipation

Structure preserving numerical method

Discrete PHS
PyPHS : everything is formal

Network are formal graph structures

- Use of NetworkX\(^1\) Python package.
- Creation and manipulation of graphs structures.

Model equations in symbolic form

- Use of Sympy\(^2\) Python package.
- A posteriori manipulation of system’s equations.
- Automated generation of \LaTeX documentation.

Numerical method is derived formally

- Also use Sympy Python package.
- Symbolic optimization of the update equations.
- Easy analysis of the signal flow → Code generation.

1. see https://networkx.github.io/
2. see http://www.sympy.org/en/index.html
PyPHS background

Main tools

- Port-Hamiltonian Systems (PHS) formalism
- Graph theory

2012→2016

- ANR project HaMecMoPSys.
- PhD thesis of Antoine Falaize in the team S3AM at IRCAM - UMR STMS 9912 founded by EDITE.

2016→...

- Implementation of the scientific results obtained between 2012 and 2016.
- Further scientific developments.

5. see https://hamecmopsys.ens2m.fr/

1. Network
PyPHS inputs: Graph and Netlist.

1. Components
PyPHS dictionary elements: Graph objects.

3. Port-Hamiltonian Systems
PyPHS Core object: Passive-guaranteed structure.

4. Numerical Method
PyPHS Method object: Structure preserving numerical scheme.

5. Code generation
PyPHS outputs: PYTHON, C++, JUCE and FAUST.
Network
System representation paradigm: Power graphs

Directed graphs with self loops

- Set of nodes $N = \{N_1, \cdots, N_n\}$.
- Set of edges $B = \{B_1, \cdots, B_n\}$ with $B_i = (n, m) \in N^2$.
- Direction: $B_i \equiv n \to m$

Receiver convention

- Each edge \equiv two power variables: Flow and Effort.
- Flow f: defined through the edges.
- Effort e: defined across the edges as the difference of two quantities.
- Power received by the edge: $P = f e \,(\text{W})$.

Connection \equiv Nodes identification

Connection graph with self loops.
Physical quantities

Flow = Current (A), Effort = Voltage (V), $\epsilon = $ Potential (V)

Example system

2 Capacitors C1 and C2,
2 Resistors R1 and R2,
1 BJ transistor Q,
3 Ports Vi, Vo and Vc.

Nodes

Graph

Graph nodes = Circuit nodes
Ground = Reference node #

Graph edges = Circuit components
Note Q \equiv 2 edges
Physical quantities

Flow = Force (N), Effort = Velocity (m/s), $\epsilon = \text{point velocity (m/s)}$

Example system

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,
1 Port F.

Graph nodes = unique velocities
Reference velocity = node #

Graph edges = components
Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), $\epsilon = $ some force (N)

Example system

2 Masses M1 and M2,
2 Springs K1 and K2,
1 Damper,
1 Port F.

Edges

Serial edges = same velocity

Graph

Add nodes to close the graph
Magnetical graphs

Physical quantities

Flow = flux variation (V), Effort = magnetomotive force (A), ϵ = some mmf (A)

Example system

3 metal pieces P1, P2, P3,
1 Air gap G,
1 Flux leakage L,
1 Port M (magnet).

Edges

Serial = same magnetic flux

Graph

Add nodes to close the graph
Thermal graphs

Physical quantities

Flow = entropy variation (W/K), Effort = temperature (K), $\epsilon = \text{temperature (K)}$

Example system

2 Heat capacities T1 and T2, 1 Heat transfer R,

Nodes

Graph nodes = temperatures
Reference temperature = node #

Graph edges = components
Note R = 2 edges (irreversibility)
Multiphysical graphs: connectors

Transformer

\[e_{3\rightarrow4} = \frac{1}{\alpha} e_{1\rightarrow2}, \]
\[f_{3\rightarrow4} = -\alpha f_{1\rightarrow2}, \]
\[[\alpha] = \frac{[f_{3\rightarrow4}]}{[f_{1\rightarrow2}]} . \]

Gyrator

\[e_{3\rightarrow4} = \alpha f_{1\rightarrow2}, \]
\[f_{3\rightarrow4} = -\frac{1}{\alpha} e_{1\rightarrow2}, \]
\[[\alpha] = \frac{[e_{3\rightarrow4}]}{[f_{1\rightarrow2}]} . \]

Conserving connection

In each case: \(P_{3\rightarrow4} = -P_{1\rightarrow2} \)
Kirchhoff laws on graphs

Incidence Matrix

\[
[\Gamma]_{n,b} = \begin{cases}
1 & \text{if edge } b \text{ is ingoing node } n, \\
-1 & \text{if edge } b \text{ is outgoing node } n.
\end{cases}
\]

\[
\Gamma = \begin{pmatrix}
B_R & B_L & B_C & B_I \\
0 & 0 & +1 & -1 \\
-1 & 0 & 0 & 0 \\
+1 & -1 & 0 & 0 \\
0 & +1 & -1 & +1
\end{pmatrix}
\]

Reduced incidence Matrix

Arbitrary reference node \#

\[
\Gamma = \begin{pmatrix}
\gamma_0 \\
\gamma \\
\vdots \\
\gamma_{n_N}
\end{pmatrix}
\]

\[
\begin{pmatrix}
B_1 & \cdots & B_{n_B} \\
\gamma_0 \\
\vdots \\
\gamma_{n_N}
\end{pmatrix}
\]

Generalized Kirchhoff’s laws

- Efforts \(\mathbf{e} \in \mathbb{R}^{n_B} \), flows \(\mathbf{f} \in \mathbb{R}^{n_B} \).
- Node quantities \(\mathbf{p} \in \mathbb{R}^{n_N} \).
- \(\gamma^T \mathbf{p} = \mathbf{e} \), (KVL).
- \(\gamma \mathbf{f} = 0 \), (KCL).
Dirac structure $\mathcal{D} = \text{Kirchhoff laws on graphs}$

Edges splitting

Depends on the components

Flow controlled $\mathbf{f} \rightarrow \text{edge} \rightarrow \mathbf{e}$.

Effort controlled $\mathbf{e} \rightarrow \text{edge} \rightarrow \mathbf{f}$.

Outputs $\mathbf{a} \in \mathbb{R}^{n_B}$.

Inputs $\mathbf{b} \in \mathbb{R}^{n_B}$.

RLC example

B_L is \mathbf{e}-controlled, B_R, B_C, B_I are \mathbf{f}-controlled.

\[
\begin{pmatrix}
\gamma_0 \\
\gamma_e \\
\gamma_f
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & +1 & -1 \\
0 & -1 & 0 & 0 \\
-1 & +1 & 0 & 0 \\
+1 & 0 & -1 & +1
\end{pmatrix}
\]

\[
\begin{pmatrix}
\mathbf{e}_b \\
\mathbf{f}_b
\end{pmatrix}
= \begin{pmatrix}
0 & \gamma_e^T \\
-\gamma_e & 0
\end{pmatrix}
\begin{pmatrix}
\mathbf{f}_a \\
\mathbf{e}_b
\end{pmatrix}
\]

J is skew-symmetric $\Rightarrow \mathbf{a}^T \cdot \mathbf{b} = \mathbf{a}^T \cdot J \cdot \mathbf{a} = 0$.

This is the Tellegen's theorem:

$\sum_{n}^{n_B} \mathbf{e}_n \mathbf{f}_n = \sum_{n}^{n_B} P_n = 0$.

Realizability criterion

If γ_f is invertible, then $\exists! J$ s.t.

$\mathbf{b} = J \cdot \mathbf{a}$.

Dirac structure

1. $\mathbf{e}_b = \gamma_e^T \cdot \mathbf{p}$ and $\mathbf{e}_a = \gamma_f^T \cdot \mathbf{p}$,
2. $\gamma_e \mathbf{f}_a = -\gamma_f \cdot \mathbf{f}_b$,
3. $\gamma_e \mathbf{f} = \gamma_f^{-1} \cdot \gamma_e$,
Automated construction of the Dirac structure

Algorithm\(^8\)

Data A netlist and a dictionary of components.

Résult

- If realizable:
 1. partition \(B = [B_e, B_f] \),
 2. structure \(b = J \cdot a \).

- Else: Realizability fault detection → the user correct the netlist.

Components
Storage components (definitions)

Constitutive relation for component s

Storage function (Hamiltonian) H_s of the state x_s.

- **Stored energy** $E_s(t) = H_s(x_s(t)) \geq 0$.
- **Received power** \(\frac{dE_s}{dt} = H'_s(x_s) \frac{dx_s}{dt} \).

Power variables for component s

- **Received power** \(\frac{dE_s}{dt} = \varepsilon_s f_s \).
 - ε-controlled $\varepsilon_s = \frac{dx_s}{dt} \Rightarrow f_s = H'_s(x_s)$.
 - f-controlled $f_s = \frac{dx_s}{dt} \Rightarrow \varepsilon_s = H'_s(x_s)$.

Total energy stored in n_E storage edges

- $x = (x_1, \cdots, x_{n_E})$.
- $E = H(x) = \sum_{s=1}^{n_E} H_s(x_s) \geq 0$.
- \(\frac{dE}{dt} = \nabla H^T \frac{dx}{dt} = \sum_{s=1}^{n_E} \frac{dH_s}{dx_s} \frac{dx_s}{dt} \).
Storage components (examples)

Mass (flow=velocity, effort=force)

- **State** momentum $x_m = m v_m$.
- **Hamiltonian** kinetic energy $H_m(x_m) = \frac{x_m^2}{2m}$.
- **Flow** mass velocity $f_m = H'_m(x_m) = \frac{x_m}{m}$.
- **Effort** inertial force $e_m = \frac{dx_m}{dt} = m \frac{dv_m}{dt}$.

Capacitor

- **State** charge q_C.
- **Hamiltonian** electrostatic energy $H_C(x_C) = \frac{x_C^2}{2C}$.
- **Flow** current $f_C = \frac{dx_C}{dt} = \frac{dq_C}{dt}$.
- **Effort** voltage $e_C = H'_C(x_C) = \frac{x_C}{C}$.
Dissipative components (definitions)

Constitutive relation for component d

Dissipation function z_d of the variable w_d.

Received (dissipated) power $P_{Dd}(t) = z_d(w_d(t)) \geq 0$.

Power variables for component d

Received power $P_{Dd}(t) = \varepsilon_d \dot{f}_d \geq 0$

- ε-controlled $\varepsilon_d = w_d \implies \dot{f}_d = z_d(w_d)$.
- f-controlled $\dot{f}_d = w_d \implies \varepsilon_d = z_d(w_d)$.

Total power dissipated in n_D dissipative edges

- $w = (w_1, \cdots, w_{n_D})$.
- $z(w) = (z_1(w_1), \cdots, z_{n_D}(w_{n_D}))$.
- $P_D = z(w)^T \cdot w = \sum_{d=1}^{n_D} z_d(w_d) w_d \geq 0$.

$D : \frac{dE}{dt} + P_D + P_S = 0$
Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

Variable elongation velocity \(w_D = v_D \).
Function resistance force \(z_D(w_D) = D w_D \), with \(D > 0 \).
Flow force \(f_D = z_D(w_D) = D v_D \).
Effort velocity \(e_D = w_D = v_D \).
Dissipated Power \(P_D = f_D e_D = R v_D^2 \)

Resistor

Variable current \(w_R = i_R \).
Function resistance voltage \(z_R(w_R) = R i_R \), with \(R > 0 \).
Flow current \(f_R = w_R = i_R \).
Effort velocity \(e_R = z_R(w_R) = R i_R \).
Dissipated Power \(P_D = f_R e_R = R i_R^2 \)
Ports (definitions)

Input and output on port p

Actuated quantity u (input) and Observed quantity y (output).

Received Power $P_{Sp}(t) = u_p(t)y_p(t)$.

The power P_{Sp} is the power that goes out of the system on port p.

Ports are power sink.

Power variables for port p

Received power $P_{Sp}(t) = \epsilon_p \mathbf{f}_p$

- ϵ-controlled $\epsilon_p = y_p \Rightarrow \mathbf{f}_p = u_p$ (flow source).
- \mathbf{f}-controlled $\mathbf{f}_p = y_p \Rightarrow \epsilon_p = u_p$ (effort source).

Total power on n_S **port edges**

- $\mathbf{u} = (u_1, \cdots, u_{n_S})$.
- $\mathbf{y} = (y_1, \cdots, y_{n_S})$.
- $P_S = \mathbf{u}^T \cdot \mathbf{y} = \sum_{p=1}^{n_S} u_p y_p$.

Ports (examples)

Voltage source

Input voltage $u_U = v_U$
Output current $y_U = i_U$
Flow current $f_U = y_U$
Effort voltage $e_U = u_U$
Received Power $P_S = f_U e_U = v_U i_U$

Imposed force (flow=force, effort=velocity)

Input force $u_U = f_U$
Output velocity $y_U = v_U$
Flow force $f_U = u_U$
Effort velocity $e_U = y_U$
Received Power $P_S = f_U e_U = f_U v_U$.
- **Mechanics (1D)**: masses, springs lin./nonlin. (cubic, saturating, etc.), lin./nonlin. damping, visco-elastic (fractional derivatives).
- **Electronics**: batteries, coils and lin./nonlin. capacitors, resistors, transistors, diodes, triodes.
- **Magnetics**: Magnets, lin./nonlin capacitors, resisto-inductor (fractional integrators).
- **Thermics**: heat sources, capacitors.
- **Connections**: electromagnetic couplings, electromechanic coupling, irreversible transfers, gyrators, transformers.
3. Port-Hamiltonian Systems

\[\mathcal{D} : \frac{dE}{dt} + P_D + P_S = 0 \]
Putting all together

Components

Storage \(b_x = \frac{dx}{dt}, \quad a_x = \nabla H(x) \)

Dissipation \(b_w = w, \quad a_w = z(w) \)

Ports \(b_y = y, \quad b_y = u \)

This encodes the power balance

\[
0 = a^T \cdot b = \nabla H(x)^T \cdot \frac{dx}{dt} + z(w) \cdot w + u^T \cdot y
\]

Network (Dirac structure)

\[
b = \begin{pmatrix} b_x \\ b_w \\ b_y \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} a_x \\ a_w \\ a_y \end{pmatrix} \]

with \(b = J \cdot a \) and \(J^T = -J \).

\[
\mathcal{D} : \frac{dE}{dt} + P_D + P_S = 0
\]
Port-Hamiltonian structure

\[
\begin{align*}
\frac{d}{dt}\begin{bmatrix} x \\ w \\ y \\ b \end{bmatrix} &= \begin{bmatrix}
+J_{xx} & +J_{xw} & +J_{xy} \\
-J_{xw}^T & +J_{ww} & +J_{wy} \\
-J_{xy}^T & -J_{wy}^T & +J_{yy}
\end{bmatrix}
\begin{bmatrix} \nabla H(x) \\ z(w) \\ u \end{bmatrix}
\end{align*}
\]
Splitting of \(z \)

\(Z_1 \) a diagonal matrix and \(z_{nl} \) a collection of nonlinear functions

\[
\begin{align*}
 w &= \begin{pmatrix} w_1 \\ w_{nl} \end{pmatrix}, \\
 z(w) &= \begin{pmatrix} Z_1 \cdot w_1 \\ z_{nl}(w_{nl}) \end{pmatrix},
\end{align*}
\]

New Port-Hamiltonian structure

\[
\begin{pmatrix}
 \frac{dx}{dt} \\
 \frac{w_{nl}}{y} \\
 \hat{b}
\end{pmatrix} = \begin{pmatrix} \hat{J} - R \\ M \end{pmatrix} \cdot \begin{pmatrix}
 \nabla H(x) \\
 z_{nl}(w_{nl}) \\
 \hat{a}
\end{pmatrix},
\]

Interpretation

- \(\hat{J} \rightarrow \) reduced conservative interconnection,
- \(R \geq 0 \rightarrow \) resistive interconnection (includes the coefficients from \(Z_1 \)).

PyPHS Port-Hamiltonian structure

\[
\begin{pmatrix}
\frac{dx}{dt} \\
\dot{w}
\end{pmatrix}
= \begin{pmatrix}
M_{xx} & M_{xw} & M_{xy} \\
M_{wx} & M_{ww} & M_{wy} \\
M_{yx} & M_{yw} & M_{yy}
\end{pmatrix}
\cdot
\begin{pmatrix}
\nabla H(x) \\
z(w) \\
u
\end{pmatrix}
\]

with

\[
M = \begin{pmatrix}
+J_{xx} & +J_{xw} & +J_{xy} \\
-J_{xw}^T & +J_{ww} & +J_{wy} \\
-J_{xy}^T & -J_{wy}^T & +J_{yy}
\end{pmatrix}
- \begin{pmatrix}
R_{xx} & R_{xw} & R_{xy} \\
R_{xw}^T & R_{ww} & R_{wy} \\
R_{xy}^T & R_{wy}^T & R_{yy}
\end{pmatrix}
\]

\[
J = \begin{pmatrix}
R_{xx} & R_{xw} & R_{xy} \\
R_{xw}^T & R_{ww} & R_{wy} \\
R_{xy}^T & R_{wy}^T & R_{yy}
\end{pmatrix}
\]

\[
R = \begin{pmatrix}
+J_{xx} & +J_{xw} & +J_{xy} \\
-J_{xw}^T & +J_{ww} & +J_{wy} \\
-J_{xy}^T & -J_{wy}^T & +J_{yy}
\end{pmatrix}
\]
4. Numerical method

\[\mathcal{D} : \frac{\delta E}{\delta t} + P_D + P_S = 0 \]
Objective

Discrete time power balance: \(\frac{\delta E}{\delta T}[k] + P_D[k] + P_S[k] = 0 \).

Choice

- \(\frac{\delta E[k]}{\delta T} = \frac{E[k+1] - E[k]}{\delta T} = \frac{H(x[k+1]) - H(x[k])}{\delta T} \)
- **Mono-variate case:**
 \[
 \frac{E[k + 1] - E[k]}{\delta T} = \sum_n \frac{H_n(x_n[k + 1]) - H_n(x_n[k])}{x_n[k + 1] - x_n[k]} \cdot \frac{x_n[k + 1] - x_n[k]}{\delta T}
 \]

Solution:

\[
\frac{dx}{dt} \rightarrow \frac{\delta x[k]}{\delta T} = \frac{x[k+1] - x[k]}{\delta T}
\]

\[
\nabla H(x) \rightarrow \nabla^d H(x[k], \delta x[k]) \triangleq \text{discrete gradient}^{10}
\]

with

\[
\left[\nabla^d H(x, \delta x) \right]_n = \frac{H_n([x + \delta x]_n) - H_n([x]_n)}{[\delta x]_n} \xrightarrow{[\delta x]_n \to 0} \frac{dH_n(x_n)}{dx_n}(x_n).
\]

Solution
\[
\frac{dx}{dt} \rightarrow \frac{\delta x[k]}{\delta T} = \frac{x[k+1]-x[k]}{\delta T}
\]
\[
\nabla H(x) \rightarrow \nabla^d H(x[k], \delta x[k])
\]

Discret PHS
\[
\begin{pmatrix}
\frac{\delta x[k]}{\delta T} \\
w[k] \\
y[k]
\end{pmatrix}
= M \cdot
\begin{pmatrix}
\nabla^d H(x[k], \delta x[k]) \\
z(w[k]) \\
u[k]
\end{pmatrix}.
\]

PHS structure is preserved in discrete time \(\Rightarrow\) numerical passivity.
Relative error on the power balance (PyPHS in blue)

\[f_e = 5000 \text{Hz} \]

\[f_e = 500 \text{Hz} \]

\[f_e = 50 \text{Hz} \]

\[f_e = 5 \text{Hz} \]
5. Code generation
PyPHS: an overview
Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.
2. Each symbolic expression is simplified and transformed into Python functions.
3. Updates of internal variable is defined by a message passing system.

Perform simulation

- Inputs are:
 1. A sequence of input values,
 2. A sequence of control parameters values.
- Apply each update sequentially.
- Results are stored on disk to avoid memory overload.
C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers → can be changed after generation.
2. Each symbolic expression is simplified and transformed into a C++ function.
3. Same message passing system.

Perform simulation

- Inputs are:
 1. the sample rate,
 2. a sequence of input values,
 3. a sequence of control parameters values.
- Apply each update sequentially.
- Results are stored on disk → call back into Python for post processing.
Only for Juce audio FX

1. Call the generated C++ object into Juce Template.
2. Generation of a set of snippets → copy/past into Juce template.
3. The control parameters are automatically associate with sliders → real-time control.

Yield AU/VST real-time audio plugins

- Can be used in most Digital Audio Workstations.

Only for FAUST audio FX

- Dedicated Method object: Symbolic pre-inversion of every matrices.
- Fixed number of nonlinear solvers iteration → duplicate of a single iteration.
- A complete iteration is built and encompassed in a dedicated feedback system.
- Control parameters are associated with sliders.
- Still experimental.

Yield VST real-time audio plugins

- Automated optimization of the signal flow.
- Can be used in most Digital Audio Workstations.
- Several compilation targets.

Last word
PyPHS today (v0.2)

- Open source Library on a GitHub repository13.
- Licence CeCILL (CEA-CNRS-INRIA Logiciels libres).
- Python 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.
- Multiphysical components dictionary.
- Automated graph analysis.
- Automated derivation of the PHS structure and LaTeX code generation.
- Passive guaranteed simulations.
- Automated generation of C++, JUCE and FAUST code.

13 https://pyphs.github.io/pyphs/
Scientific results to be implemented

- Anti-aliasing observer (PhD Remy Müller).
- PHS in scattering variables (⇝ Wave Digital PHS).
- Piecewise Linear constitutive laws (⇝ cope with realizability faults).
- Improve Nonlinear solver (≠ Newton-Raphson).
- Automated derivation of a command laws (feedforward + feedback).
- ...
Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS
Thank you for your attention

Contact: antoine.falaize@gmail.com