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Introduction

Objective : Numerical simulation of multiphysical systems

• electronics, mechanics, magnetics, thermics.

• nonlinearities, non ideal behaviors.

• high complexity.

Standard approachs

1. Build a set of elementary physical models.

2. Build a system as the connection of these models.

3. Apply ad-hoc discretization methods.

Difficulties

D1 The stability of a single model simulation is not guaranteed.

D2 This is even worst for the interconnected system.
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But physical systems are passive systems

Power-balance dE
dt + PD + PS = 0

with

• Energy E (J),

• Dissipated power PD (W),

• Sink Power PS (W).

3/45



Our approach

1. Structure physical models according to energy flows

2. Build a system as the structure preserving connection of these models

3. Apply a structure preserving discretization method

Result

D1 The stability of a single model simulation is guaranteed.

D2 The interconnected system inherit from this property.
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Encoding of passivity in PyPHS
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PyPHS : everything is formal

Network are formal graph structures

• Use of Networkx 1 Python package.

• Creation and manipulation of graphs structures.

Model equations in symbolic form

• Use of Sympy 2 Python package.

• A posteriori manipulation of system’s equations.

• Automated generation of LATEXdocumentation.

Numerical method is derived formally

• Also use Sympy Python package.

• Symbolic optimization of the update equations.

• Easy analysis of the signal flow → Code generation.

1. see https://networkx.github.io/

2. see http://www.sympy.org/en/index.html
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PyPHS background

Main tools

• Port-Hamiltonian Systems (PHS) formalism 3

• Graph theory 4

2012→2016

• ANR project HaMecMoPSys 5.

• PhD thesis of Antoine Falaize 6 in the team S3AM 7 at IRCAM - UMR STMS

9912 founded by EDITE.

2016→ · · ·

• Implementation of the scientific results obtained between 2012 and 2016.

• Further scientific developments.

3. Maschke, Van Der Schaft et Breedveld, “An intrinsic Hamiltonian formulation of network dynamics :

Non-standard Poisson structures and gyrators”, 1992.

4. Desoer et Kuh, Basic circuit theory, 2009.

5. see https://hamecmopsys.ens2m.fr/

6. Falaize, “Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios :

Approche par réseau de composants et formulation Hamiltonienne à Ports”, 2016.

7. see http://s3am.ircam.fr/?lang=en
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Network

= −
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System representation paradigm : Power graphs

Directed graphs with self loops

• Set of nodes N = {N1, · · · , Nn} .

• Set of edges B = {B1, · · · , Bn} with Bi = (n,m) ∈ N2.

• Direction : Bi ≡ n→ m

Receiver convention

• Each edge ≡ two power variables : Flow and Effort

• Flow f : defined through the edges.

• Effort e : defined across the edges as the difference of two quantities.

• Power received by the edge : P = f e (W).

Connection ≡ Nodes identification

+ =
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Electrical graphs

Physical quantities

Flow = Current (A), Effort = Voltage (V), ε = Potential (V)

Example system

2 Capacitors C1 and C2,

2 Resistors R1 and R2,

1 BJ transistor Q,

3 Ports Vi, Vo and Vc.

Nodes

Graph nodes = Circuit nodes

Ground = Reference node #

Graph

Graph edges = Circuit

components

Note Q ≡ 2 edges
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Mechanical graphs

Physical quantities

Flow = Force (N), Effort = Velocity (m/s), ε = point velocity (m/s)

Example system

2 Masses M1 and M2,

2 Springs K1 and K2,

1 Damper,

1 Port F.

Nodes

Graph nodes = unique velocities

Reference velocity = node #

Graph

Graph edges = components
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Mechanical graphs (dual)

Physical quantities

Flow = Velocity (m/s), Effort = force (N), ε = some force (N)

Example system

2 Masses M1 and M2,

2 Springs K1 and K2,

1 Damper,

1 Port F.

Edges

Serial edges = same velocity

Graph

Add nodes to close the graph
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Magnetical graphs

Physical quantities

Flow = flux variation (V), Effort = magnetomotive force (A), ε = some mmf (A)

Example system

3 metal pieces P1, P2, P3,

1 Air gap G,

1 Flux leakage L,

1 Port M (magnet).

Edges

Serial = same magnetic flux

Graph

Add nodes to close the graph
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Thermal graphs

Physical quantities

Flow = entropy variation (W/K), Effort = temperature (K), ε = temperature (K)

Example system

2 Heat capacities T1 and T2,

1 Heat transfer R,

Nodes

Graph nodes = temperatures

Reference temperature = node #

Graph

Graph edges = components

Note R = 2 edges (irreversibility)
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Multiphysical graphs : connectors

Transformer

e3→4 = 1
α
e1→2,

f3→4 = −α f1→2,

[α] = [f3→4]
[f1→2]

.

Gyrator

e3→4 = α f1→2,

f3→4 = − 1
α
e1→2,

[α] = [e3→4]
[f1→2]

.

Conserving connection
In each case : P3→4 = −P1→2
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Kirchhoff laws on graphs

Example : RLC

Incidence Matrix

[Γ]n,b =

{
1 if edge b is ingoing node n,

−1 if edge b is outgoing node n.

Γ =

BR BL BC BI


0 0 +1 −1 #

−1 0 0 0 N1

+1 −1 0 0 N2

0 +1 −1 +1 N3

Reduced incidence Matrix

Arbitrary reference node #

Γ =

B1 · · · BnB


γ0 #

N1

γ
...

NnN

,

Generalized Kirchhoff’s laws

• Efforts e ∈ RnB , flows f ∈ RnB .

• Node quantities p ∈ RnN .

• γᵀp = e, (KVL).

• γf = 0, (KCL).
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Dirac structure D = Kirchhoff laws on graphs

Edges splitting
Depends on the components

Flow controlled f→ edge → e.

Effort controlled e→ edge → f.

Outputs a ∈ RnB .

Inputs b ∈ RnB .

RLC example
BL is e-controlled, BR , BC , BI are f-controlled.

(
γ0

γe γf

)
=

BL BR BC BI


0 0 +1 −1 N0

0 −1 0 0 N1

−1 +1 0 0 N2

+1 0 −1 +1 N3

.

Realizability criterion
If γf is invertible, then ∃!J s.t.

b = J · a.

Dirac structure

1. eb = γᵀe · p and ea = γᵀf · p,

2. γefa = −γf · fb,

3. γef = γ−1
f · γe,

(
eb
fb

)
︸ ︷︷ ︸

b

=

(
0 γᵀef
−γef 0

)
︸ ︷︷ ︸

J

(
fa

eb

)
︸ ︷︷ ︸

a

.

J is skew-symmetric ⇒ aᵀ · b = aᵀ · J · a = 0.

This is the Tellegen’s theorem :∑nB
n en fn =

∑nB
n Pn = 0.
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PyPHS realizability analysis

Automated construction of the Dirac structure

Algorithme 8

Data A netlist and a dictionary of components.

Résult • If realizable :

1. partition B = [Be, Bf],

2. structure b = J · a.

• Else : Realizability fault detection → the user correct the

netlist.

8. Falaize et Hélie, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.
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Components

= −
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Storage components (definitions)

Constitutive relation for component s

Storage function (Hamiltonian) Hs of the state xs .

Stored energy Es(t) = Hs
(
xs(t)

)
≥ 0.

Received power dEs
dt

= H′s
(
xs
) dxs

dt

Power variables for component s

Received power dEs
dt

= es fs .

e-controlled es = dxs
dt

=⇒ fs = H′s
(
xs
)
.

f-controlled fs = dxs
dt

=⇒ es = H′s
(
xs
)
.

Total energy stored in nE storage edges
• x = (x1, · · · , xnE ).

• E = H
(
x
)

=
∑nE

s=1 Hs(xs) ≥ 0.

• dE
dt

= ∇Hᵀ dx
dt

=
∑nE

s=1
dHs
dxs

dxs
dt

.
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Storage components (examples)

Mass (flow=velocity, effort=force)

State momentum xm = mvm.

Hamiltonian kinetic energy Hm(xm) =
x2
m

2 m
.

Flow mass velocity fm = H′m(xm) = xm
m

.

Effort inertial force em = dxm
dt

= m dvm
dt

.

Capacitor

State charge qC .

Hamiltonian electrostatic energy HC (xC ) =
x2
C

2 C
.

Flow current fC = dxC
dt

= dqC
dt

.

Effort voltage eC = H′C (xC ) = xC
C

.
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Dissipative components (definitions)

Constitutive relation for component d
Dissipation function zd of the variable wd .

Received (dissipated) power PDd (t) = zd
(
wd (t)

)
≥ 0.

Power variables for component d

Received power PDd (t) = ed fd ≥ 0

e-controlled ed = wd =⇒ fd = zd
(
wd

)
.

f-controlled fd = wd =⇒ ed = zd
(
wd

)
.

Total power dissipated in nD dissipative

edges
• w = (w1, · · · ,wnD ).

• z(w) = (z1(w1), · · · , znD (wnD )).

• PD = z(w)ᵀ · w =
∑nD

d=1 zd (wd )wd ≥ 0.
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Dissipative components (examples)

Dashpot (flow=force, effort=velocity)

Variable elongation velocity wD = vD .

Function resistance force zD(wD) = D wD , with D > 0.

Flow force fD = zD(wD) = D vD .

Effort velocity eD = wD = vD .

Dissipated Power PD = fD eD = R v2
D

Resistor

Variable current wR = iR .

Function resistance voltage zR(wR) = R iR , with R > 0.

Flow current fR = wR = iR .

Effort velocity eR = zR(wR) = R iR .

Dissipated Power PD = fR eR = R i2R
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Ports (definitions)

Input and output on port p

Actuated quantity u (input) and Observed quantity y

(output).

Received Power PSp(t) = up(t) yp(t).

The power PSp is the power that goes out

of the system on port p.
Ports are power sink.

Power variables for port p

Received power PSp(t) = ep fp

e-controlled ep = yp =⇒ fp = up (flow source).

f-controlled fp = yp =⇒ ep = up (effort source).

Total power on nS port edges
• u = (u1, · · · , unS ).

• y = (y1, · · · , ynS ).

• PS = uᵀ · y =
∑nS

p=1 up yp .
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Ports (examples)

Voltage source

Input voltage uU = vU .

Output current yU = iU .

Flow current fU = yU .

Effort voltage eU = uU .

Received Power PS = fU eU = vU iU .

Imposed force (flow=force, effort=velocity)

Input forceuU = fU .

Output velocity yU = vU .

Flow force fU = uU .

Effort velocity eU = yU .

Received Power PS = fU eU = fU vU .
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PyPHS Dictionary (v0.2)

• Mechanics (1D) : masses, springs lin./nonlin. (cubic, saturating, etc.),

lin./nonlin. damping, visco-elastic (fractional derivatives).

• Electronics : batteries, coils and lin./nonlin. capacitors, resistors, transistors,

diodes, triodes.

• Magnetics : Magnets, lin./nonlin capacitors, resisto-inductor (fractional

integrators).

• Thermics : heat sources, capacitors.

• Connections : electromagnetic couplings, electromechanic coupling, irreversible

transfers, gyrators, transformers.
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3. Port-Hamiltonian Systems
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Putting all together

Components

Storage bx = dx
dt

, ax = ∇H(x)

Dissipation bw = w, aw = z(w)

Ports by = y, by = u

This encodes the power

balance

0 = aᵀ · b

= ∇H(x)ᵀ ·
dx

dt︸ ︷︷ ︸
dE
dt

+ z(w) · w︸ ︷︷ ︸
PD

+ uᵀ · y︸ ︷︷ ︸
PS

Network (Dirac structure)

b =

 bx

bw

by

 and a =

 ax

aw

ay


with b = J · a and Jᵀ = −J.
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Port-Hamiltonian structure

Storage

Dissipation

Ports


dx
dt

w

y


︸ ︷︷ ︸

b

=

 +Jxx +Jxw +Jxy

−Jxw
ᵀ +Jww +Jwy

−Jxy
ᵀ −Jwy

ᵀ +Jyy


︸ ︷︷ ︸

J

·

 ∇H(x)

z(w)

u


︸ ︷︷ ︸

a
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Reduction of the linear dissipative structure 9

Splitting of z
Zl a diagonal matrix and znl a collection of nonlinear functions

w =

(
wl

wnl

)
, z(w)=

(
Zl · wl

znl(wnl)

)
,

New Port-Hamiltonian structure
dx
dt

wnl

y


︸ ︷︷ ︸

b̂

=
(

Ĵ− R
)

︸ ︷︷ ︸
M

·

 ∇H(x)

znl(wnl)

u


︸ ︷︷ ︸

â

Interpretation

• Ĵ→ reduced conservative interconnection,

• R � 0→ resistive interconnection (includes the coefficients from Zl).

9. Falaize et Hélie, “Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach”,

2016.
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PyPHS Port-Hamiltonian structure


dx
dt

w

y


︸ ︷︷ ︸

b

=

 Mxx Mxw Mxy

Mwx Mww Mwy

Myx Myw Myy


︸ ︷︷ ︸

M

·

 ∇H(x)

z(w)

u


︸ ︷︷ ︸

a

with

M =

 +Jxx +Jxw +Jxy

−Jxw
ᵀ +Jww +Jwy

−Jxy
ᵀ −Jwy

ᵀ +Jyy


︸ ︷︷ ︸

J

−

 Rxx Rxw Rxy

Rxw
ᵀ Rww Rwy

Rxy
ᵀ Rwy

ᵀ Ryy


︸ ︷︷ ︸

R
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4. Numerical method
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Structure preserving numerical method 1

Objective

Discrete time power balance : δE
δT

[k] + PD[k] + PS[k] = 0.

Choice

• δE [k]
δT

= E [k+1]−E [k]
δT

= H(x[k+1])−H(x[k])
δT

• Mono-variate case :

E[k + 1]− E[k]

δT
=
∑
n

Hn(xn[k + 1])−Hn(xn[k])

xn[k + 1]− xn[k]
· xn[k + 1]− xn[k]

δT

Solution :

dx
dt
−→ δx[k]

δT
= x[k+1]−x[k]

δT

∇H(x) −→ ∇dH
(
x[k], δx[k]

)
, discrete gradient 10

with [
∇dH

(
x, δx

)]
n

=
Hn

(
[x + δx]n

)
−Hn

(
[x]n
)

[δx]n
−→

[δx]n→0

dHn

dxn
(xn).

10. Itoh et Abe, “Hamiltonian-conserving discrete canonical equations based on variational difference quotients”,
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Structure preserving numerical method 2

Solution

dx
dt −→ δx[k]

δT = x[k+1]−x[k]
δT

∇H(x) −→ ∇dH
(
x[k], δx[k]

)
Discret PHS 

δx[k]
δT

w[k]

y[k]

=M ·

∇dH
(
x[k], δx[k]

)
z(w[k])

u[k]

 .

PHS structure is preserved in discrete time ⇒ numerical passivity.
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Relative error on the power balance (PyPHS in blue)

fe = 5000Hz fe = 500Hz

fe = 50Hz fe = 5Hz
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5. Code generation
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PyPHS : an overview
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Python simulation

Formal Method object to numerical Simulation object

1. Parameters are substituted in the discrete PHS.

2. Each symbolic expression is simplified and transformed into Python functions.

3. Updates of internal variable is defined by a message passing system.

Perform simulation

• Inputs are :

1. A sequence of input values,

2. A sequence of control parameters values.

• Apply each update sequentially.

• Results are stored on disk to avoid memory overload.

39/45



C++ code generation

Formal Method object to C++ code

1. Parameters are associated to pointers → can be changed after generation.

2. Each symbolic expression is simplified and transformed into a C++ function.

3. Same message passing system.

Perform simulation

• Inputs are :

1. the sample rate,

2. a sequence of input values,

3. a sequence of control parameters values.

• Apply each update sequentially.

• Results are stored on disk → call back into Python for post processing.
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Juce 11 C++ snippets generation for real-time audio plugins

Only for Juce audio FX

1. Call the generated C++ object into Juce Template.

2. Generation of a set of snippets → copy/past into Juce template.

3. The control parameters are automatically associate with sliders → real-time

control.

4. Still experimental.

Yield AU/VST real-time audio plugins

• Can be used in most Digital Audio Workstations.

11. https ://juce.com/
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FAUST 12 code generation for real-time audio plugins

Only for FAUST audio FX

• Dedicated Method object : Symbolic pre-inversion of every matrices.

• Fixed number of nonlinear solvers iteration → duplicate of a single iteration.

• A complete iteration is built and encompassed in a dedicated feedback system.

• Control parameters are associated with sliders.

• Still experimental.

Yield VST real-time audio plugins

• Automated optimization of the signal flow.

• Can be used in most Digital Audio Workstations.

• Several compilation targets.

12. http://faust.grame.fr/
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Last word
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PyPHS today (v0.2)

• Open source Library on a Github repository 13.

• Licence CeCILL (CEA-CNRS-INRIA Logiciels libres).

• Python 2.7 & 3.5 supported, Mac OSX, Windows 10 and Linux.

• Multiphysical components dictionary.

• Automated graph analysis.

• Automated derivation of the PHS structure and LATEXcode generation.

• Passive guaranteed simulations.

• Automated generation of C++, Juce and FAUST code.

13. https://pyphs.github.io/pyphs/
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PyPHS tomorrow

Scientific results to be implemented

• Anti-aliasing observer (PhD Remy Müller).

• PHS in scattering variables ( Wave Digital PHS).

• Piecewise Linear constitutive laws ( cope with realizability faults).

• Improve Nonlinear solver ( 6= Newton-Raphson).

• Automated derivation of a command laws (feedforward + feedback).

• ...
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PyPHS tomorrow

Accelerate development
CALL FOR DEVELOPERS

Improve robustness
CALL FOR USERS
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Thank you for your attention
Contact : antoine.falaize@gmail.com
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